
F325: Equilibria, Energetics and Elements 5.2.3 Electrode Potentials and Fuel Cells

59 marks

1.	(i)	oxidation: Fe \rightarrow Fe ²⁺ + 2e ⁻ (1) reduction: V ³⁺ + e ⁻ \rightarrow V ²⁺ (1)	2	
	(ii)	$E_{\rm cell} = 0.18 \ {\rm V}$ (1)	1	[3]
2.	(i)	system III $\times 2$ and reversed + system IV (1) $2H_2 + O_2 \rightarrow 2H_2O/$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ (1)	2	
	(ii)	advantages: only H ₂ O formed/ non-polluting greater efficiency (1)		
		disadvantages: H ₂ difficult to store (1) H ₂ difficult to manufactured initially / limited life cycle of H ₂ adsorber/absorber (1)	4	
				[6]
3.	(a)	Emf/voltage/potential difference (of electrochemical cell) comprising a (Cu/Cu^{2+}) half cell combined with a standard	1	
		hydrogen electrode 1 atm, 1 mol.dm ⁻³ , 298K (all 3 needed but can transfer mark if stated in (b))	1 1	
	(b)	Salt bridge and voltmeter	1	
		Platinum electrode dipping into 1 mol dm ⁻³ H ⁺ Hydrogen gas feed (Accept a suitable alternative standard electrode)	1 1	
				[6]
4.	(a)	 (i) Stainless steel + corrosion resistance or alloys for tools + hardness or other named alloy/use/property Allow chrome plating with attractive or barrier to corrosion 	1	
		(ii) Chromium $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ (allow $4s^1 3d^5$)	1	

(b) (i)
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 14\operatorname{H}^+ + 6\operatorname{Fe}^{2+} \rightarrow 2\operatorname{Cr}^{3+} + 6\operatorname{Fe}^{3+} + 7\operatorname{H}_2\operatorname{O}$$
 1
 $\operatorname{Cr}_2 \operatorname{O}_7^{2-} / \operatorname{Cr}^{3+}$ has more positive electrode potential 1
Therefore $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ is the stronger oxidising agent which oxidises Fe^{2+} to Fe^{3+} (ora) 1
(ii) $\operatorname{Emf} = (+) \ 0.56 \ \mathrm{V}$ 1

5. (a)
$$VO_2^+$$

Allow ecf from (b) (i) Solutions can be reversed.

4

1

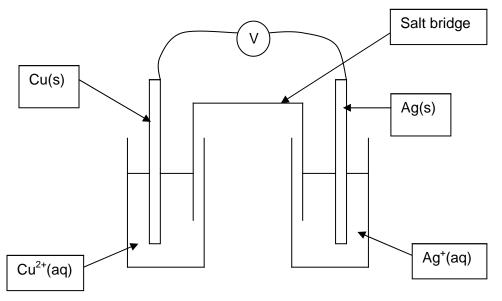
 (iii) 298 K / 25 °C temperature all solutions 1 mol dm⁻³ Both needed for 1 mark. Ignore any reference to pressure

[7]

[6]

1

1


6.

(a) A = Platinum(electrode) B = H⁺(aq) / HCl(aq) / other suitable acid C = Voltmeter / galvanometer D = $Cl_2(g)$ State symbols needed for B and D All correct = 2, 3 correct = 1

2

(b)	(i)	Arrow marked on or close to wire via voltmeter pointing from hydrogen half cell to chlorine half cell Electrons flow to half cell with more +ve standard electrode potential	1 1
	(ii)	Pressure = 1 Atm / 100 kPa Temp = 298 K / 25°C Concentration = 1 mol dm ⁻³ All 3 correct = 2 marks 2 correct = 1 mark	2
(c)	than ClO bette Alte Beca there	standard electrode potential for $ClO_3^- / \frac{1}{2}Cl_2$ is more positive that of $\frac{1}{2}Cl_2 / Cl^-$ 3^- has a greater tendency to gain electrons than Cl_2 / ClO_3^- is a er oxidising agent than Cl_2 rnative: ause E^{Θ} is positive, the reaction will go from left to right efore ClO_3^- is reduced so it must be a better oxidising at than chlorine.	1

- (a) Emf / voltage / potential difference Half cell combined with standard hydrogen electrode Standard conditions 298K, 1 mol dm⁻³, 1 atm (all 3 required for 1 mark)
 - (b) (i) Diagram shows: Voltmeter + salt bridge + complete circuit Solution labelled Cu^{2+} and electrode labelled Ag

(ii) Direction from Cu(s) to Ag(s) (must be in / close to wire)

[8]

1

1 1

1 1

1

		(iii) $0.80 - 0.34 = 0.46$ V	1	
		(iv) $Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$	1	
	(c)	Standard Electrode Potential for chlorine is more positive than Fe^{3+} therefore it is a better oxidising agent than Fe^{3+} (do not accept E^{9} is larger or smaller) Standard Electrode Potential for iodine is less positive than Fe^{3+} therefore it is a poorer oxidising agent than Fe^{3+} (Accept release of electrons/equilibrium arguments)	1 1	[10]
8.	4NO	$O_2 + O_2 + 2H_2O \rightarrow 4HNO_3$ (1)		
		to $+4$ to $+5$ to -2 (1) Could be below equation	2	[2]
9.	(a)	Emf of a cell / voltage / potential difference / cell potential Comprising half cell combined with standard hydrogen electrode Conc = 1 mol.dm ⁻³ ; Pressure (of H_2) = 1 atm; Temp = 298K (all of above = 1 mark)	1 1 1	
	(b)	+0.16 V (unit required)	1	[4]
10.	(a)	(i) $2MnO_4^- + 10Cl^- + 16H^+ \rightarrow 2Mn^{2+} + 5Cl_2 + 8H_2O$ correct species on both sides of equation equation balanced (ignore electrons for first mark, penalise for balance)	1 1	
		(ii) Chlorine $-1 \rightarrow 0$ Manganese $+7 \rightarrow +2$ Link to (i) and allow ecf	1 1	
		(iii) Chloride ion oxidised (not chlorine) Manganate(VII) ion reduced (not manganese)	1 1	
	(b)	0.16 V too small/rate too slow/insufficient activation energy/not standard conditions	1	[7]